SOTTOSTAZIONI PER TELERISCALDAMENTO

DISTRICT HEATING SUBSTATIONS
INDEX

GENERAL INFORMATION .. 2
 Before installing ... 2
 Materials and PED (97/23/CE) Standards .. 3
SKID-TYPE DISTRICT HEATING SUBSTATIONS .. 4
 Technical Features .. 4
 Hydraulic Diagram ... 5
 SKID-TYPE SUBSTATION FOR HEATING USE ONLY .. 6
 SKID-TYPE SUBSTATION FOR HEATING AND DOMESTIC HOT-WATER PRODUCTION (with heat
 exchangers in parallel configuration) ... 7
 Hydraulic Diagram ... 8
WALL-MOUNTED DISTRICT HEATING SUBSTATIONS ... 9
 Technical Features .. 9
 WALL-MOUNTED SUBSTATION FOR HEATING USE ONLY.. 10
 Capacities and Dimensions .. 10
 Hydraulic Diagram ... 11
 WALL-MOUNTED SUBSTATION FOR HEATING AND DOMESTIC HOT-WATER PRODUCTION (with heat
 exchangers in parallel configuration) ... 12
 Capacities and Dimensions .. 12
 Hydraulic Diagram ... 13
 WALL-MOUNTED SUBSTATION FOR HEATING AND DOMESTIC HOT WATER PRODUCTION (with heat
 exchangers in series configuration) ... 14
 Capacities and Dimensions .. 14
 Hydraulic Diagram ... 15
EXAMPLES OF SYSTEM LAYOUTS .. 16
 LEGEND .. 16
 DIAGRAM No. 1 ... 17
 DIAGRAM No. 2 ... 17
 DIAGRAM No. 3 ... 17
 DIAGRAM No. 4 ... 18
 DIAGRAM No. 5 ... 18
 DIAGRAM No. 6 ... 18
 DIAGRAM No. 7 ... 19

This document was created by the TECHNO SYSTEM Technical Office.

All rights reserved.
This document may not be reproduced in whole or in part without explicit written authorization by
Techno System.

Techno System also reserves the right to modify the technical features and construction data of
any product referred to herein at any time and without notice.
GENERAL INFORMATION

TECHNO SYSTEM, a long-time leader in the district heating sector, builds skid-type substations (for medium and high capacity applications) complete with all the components needed for ensuring safety and for heat measurement and regulation as well as fittings for remote management. The substations are compact, can be completely dismantled, and can be installed even in small or difficult-to-access spaces.

The TECHNO SYSTEM district heating substations are supplied as pre-assembled, pre-cabled units that interface with the vector fluid delivery system (superheated or hot water) distributed by the energy production and/or supply companies to permit the user system – which operates at a lower temperature and pressure – to draw off the quantity of energy (heat) needed for heating and/or production of domestic hot water.

The district heating substation is a thermal exchange system comprising plate heat exchangers supplied by superheated or hot water for heating via radiators, fan coils, floor panels, etc., and/or for production of domestic hot water (DHW).

The heat exchangers are the TECHNO SYSTEM plate type, correctly dimensioned in accordance with project data and technical specifications. The electrical panel supplied with the substation is the standard TECHNO SYSTEM panel for DHS substations, featuring small size and full conformity with pertinent laws, standards, and regulations.

The TECHNO SYSTEM substations are pre-assembled and tested at our plant and can be supplied complete with insulation on the piping and heat exchangers. The overall dimensions of the substations reflect the principles of maximum compactness typical of all TECHNO SYSTEM DHS substations. Any special adaptations to the substations are subject to separate estimate.

For building its DHS substations, TECHNO SYSTEMS uses only materials conforming to the requirements of the Pressure Equipment Directive (“PED Directive”) - 97/23/EC - and in compliance with the provisions of the Italian “Raccolta R” Edition 2009. The procedures and welding equipment used are DNV-qualified in accordance with EN 15614 and EN 287 PED.

Where applicable, x-ray inspection of the piping welds is conducted in accordance with TECHNO SYSTEM standard procedures: 10% of the welded joins on category PED I, II, III, and IV substations are inspected, while no x-ray inspections are called for in the case of substations covered by Art. 3 § 3, which are also welded in accordance with EN 15614 and EN 287 PED standards.

The construction materials and production and testing methods used for building, testing, and outfitting the TECHNO SYSTEM substations (carrying ISO 9001-2008 and PED certification issued by DNV) all meet the standards set by the PED Directive. Each substation is supplied complete with statement of PED compliance.

In the wall-mounted DHS substations, the heat exchangers (in series or in parallel) are inserted in a load-bearing structure in hot-galvanized sheet with jacket (for the wall-hung version) or with epoxy-finished sheet-metal cornice (for the recessed version).

In the version featuring parallel exchangers, heating may operate simultaneously with DHW production, while DHW takes priority over heating in the version with series-mounted exchangers.

In the skid-type DHS substations, the heat exchangers are installed on a load-bearing carbon-steel base with singly-adjustable feet.

All the TECHNO SYSTEM district heating substations are equipped with an electrical control panel featuring a customizable PID (Proportional Integral Derivative) programmable logic digital controller with the most widely-used combinations pre-programmed.

Before Installing

Since there do not exist any technical standards making explicit reference to particular sites in which to install the substation for safety reasons, it is the responsibility of the system designer and/or installer to select the most suitable location for installation.

It is nevertheless prudent to not install the substation in direct contact with walls and/or other equipment installed in the “boiler room” in order to guarantee the best possible access in view of future routine and extraordinary maintenance operations.

Insofar as concerns the electrical supply system, refer to Italian Law no. 46/90 of March 1990 and to the pertinent CE (IEC) standards.

Also remember that this type of heat generator is subject to the provisions of Italian Presidential Decree no. 412/93 concerning energy consumption for thermal uses in buildings.
All the pre-assembled substations built by TECHNO SYSTEM comply with the Pressure Equipment (PED) 97/23/EC, Low Voltage 73/23/EC, and Electromagnetic Compatibility 89/336/EC Directives, are supplied complete with all relevant documentation (Statement of PED Compliance, CE mark, use and maintenance manuals) called for by applicable laws, regulations, and standards, and are fully compliant with the prescriptions of said documents. All the pre-assembled substations built by TECHNO SYSTEM are constructed in conformity with the provisions of the Italian “Raccolta R” Edition 2009.

Materials and PED (97/23/CE) Standards

Following the entry into force of the Pressure Equipment Directive (PED - 97/23/EC), TECHNO SYSTEM accelerated its ongoing quest for quality at all levels, to ensure full compliance with the Directive of all the models of TECHNO SYSTEM heat exchangers. For the company, this step entailed obtaining certification of its Quality System certification and, at the same time, Form H and H1 PED certification. The ensuing comprehensive revision of heat exchanger design and construction entailed redefinition and consequent improvement of all the safety and quality parameters, through use of materials with excellent mechanical properties.
SKID-TYPE DISTRICT HEATING SUBSTATIONS

Technical Features

Maximum operating pressure DHS network 16 bar (optional PN25)
Maximum operating pressure Heating side according to demand (max 8 bar)
Maximum operating pressure DHW side 6 bar (where applicable)
Maximum differential pressure on primary side 16 bar
Minimum differential pressure on primary side close to substation 2 bar
Maximum pressure drop on primary side 1 bar

Test pressure (differential) 1.43 times design pressure.

Protection Class IP54
Electrical supply voltage 230 V (optional 380 V)
Electrical supply frequency 50 Hz

The district heating substation is a fully pre-assembled, pre-cabled unit for heat transmission, featuring high yield and maximum operating safety. The base is built of steel sections which house:

- **Inspectable plate heat exchangers** (corrugated or smooth plates) or **braze welded heat exchangers**

- **Safety accessories**:
 - Safety valves, ISPESL certified (PED)
 - Expansion tank

- **Monitoring accessories**:
 - Pressure gauges
 - Thermometers
 - Immersion sensors

- **Protection accessories**:
 - Safety thermostats
 - Temperature-control thermostat (for hot water) or regulation and safety dual thermostat (for superheated water)

- **Control accessories**:
 - Two-way seated poppet valves
 - Electrical servo control for the above-mentioned valves

- **Automatic control accessories**:
 - Thermal regulation station for monitoring temperatures at various points and programming and defining parameters for the physical and electrical values to be managed.

- **Main electrical control panel**

On request, the skid-type district heating substations may be supplied fully insulated (exchanger and piping) or partially insulated (exchanger only or piping only).

N.B. Substations of this type may also be constructed for domestic hot water production alone. Such a version does not include the electrical panel, thermal regulation unit, or the external sensor. The off-site elements (as shown in the diagram below) must be connected to the thermal regulation panel of another substation designed for heating use only.
SKID-TYPE SUBSTATION FOR HEATING USE ONLY

This type of substation is suitable for **high and medium capacity** systems supplied by **superheated water** or **hot water**. It is designed for **heating use only** and can be equipped with the **SIEMENS RVD** (or similar) controller or with the **TECHNO SYSTEM TSRE 010** temperature-control system.

These substations integrate perfectly with systems for instantaneous production of domestic hot water with accumulation tanks, boilers, solar panels, and for pool heating systems, for example through application of specific modules units produced by TECHNO SYSTEM (refer to the examples included as attachments in this folder).

With this type of substation, users can:
- directly set the heating set-point using easy-access dedicated pushbuttons. (TSRE 010)
- manage heating independently, with separate onboard timers and weekly programs (TSRE 010)
- manage heating by external thermostat/timer-thermostat or on the basis of a weekly schedule programmed in the controller (on/off settings at half-hour intervals) (TSRE 010)
- set **SUMMER** or **WINTER** parameters (heating deactivated in **SUMMER** mode)
- manage heating temperature by the fixed-point or climate-curve method
- lock the heating-side set-point for systems serving floor panels (TSRE 010)
- set an **ANTI-SCUFF** cycle for the HEATING side pump (if installed) when system is in **SUMMER** mode
- set an **ANTI-FREEZE** cycle with minimum threshold
- maintain temperature in the primary circuit via hydraulic bypass (with ball valve) or managed by the regulator (with times, intervals, and quantities set via the onboard calendar) (TSRE 010)
- connect a safety thermostat on the heating side (for floor-panel systems) featuring cut-in signal (by acoustic alarm and display message)
- signal sensor malfunction (by acoustic alarm and display message) (TSRE 010)
- signal excessive pressure in the heating circuit by acoustic alarm and display message and signal low water level in the heating circuit (and shutdown of the heating side pump, if applicable) by acoustic alarm and display message (TSRE 010)
- reset the values to factory defaults.

Additionally, this type of substation is prepared for installing devices for:
- limiting the flow rate on the DHS side
- limiting the return temperature on the DHS side, with sensor malfunction signal (by acoustic alarm and display message)
- remote reading of the thermal energy meter
- remote control
- managing a **GSM** or **PSTN** modem connection, which permits sending SMSs or e-mails for notifying alarms or malfunctions (TSRE 010).

<table>
<thead>
<tr>
<th>Heating Capacity (kW)</th>
<th>Design Temperature (°C)</th>
<th>Overall dimensions (mm) Length x Height x Width</th>
<th>Connections on Primary Side</th>
<th>Connections on Secondary Side</th>
<th>Empty Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>100</td>
<td>1390x1830x500</td>
<td>DN40</td>
<td>DN50</td>
<td>250</td>
</tr>
<tr>
<td>400</td>
<td>100</td>
<td>1560x1870x560</td>
<td>DN50</td>
<td>DN65</td>
<td>400</td>
</tr>
<tr>
<td>600</td>
<td>100</td>
<td>1770x1870x610</td>
<td>DN65</td>
<td>DN80</td>
<td>450</td>
</tr>
<tr>
<td>800</td>
<td>100</td>
<td>1730x1870x615</td>
<td>DN80</td>
<td>DN100</td>
<td>500</td>
</tr>
<tr>
<td>1000</td>
<td>100</td>
<td>1935x1890x1000</td>
<td>DN80</td>
<td>DN100</td>
<td>800</td>
</tr>
<tr>
<td>200</td>
<td>140</td>
<td>1160x1680x500</td>
<td>DN25</td>
<td>DN50</td>
<td>200</td>
</tr>
<tr>
<td>400</td>
<td>140</td>
<td>1405x1870x550</td>
<td>DN40</td>
<td>DN65</td>
<td>350</td>
</tr>
<tr>
<td>600</td>
<td>140</td>
<td>1520x1870x600</td>
<td>DN50</td>
<td>DN80</td>
<td>400</td>
</tr>
<tr>
<td>800</td>
<td>140</td>
<td>1780x1870x600</td>
<td>DN50</td>
<td>DN100</td>
<td>450</td>
</tr>
<tr>
<td>1000</td>
<td>140</td>
<td>1915x1840x1000</td>
<td>DN65</td>
<td>DN100</td>
<td>750</td>
</tr>
</tbody>
</table>

NOTE: each substation is dimensioned on the basis of the pressure on the two circuits, the thermal head, and/or the heating capacity requested by the customer. For this reason, the overall dimensions of the substations are subject to change, case by case; the maximum measurements are suggested by the above table (calculation of table values is based on TECHNO SYSTEM standard parameters). Wall-mounted substations are available for heating capacities equal to or less than 150 kW.
Hydraulic Diagram

COMPONENTS
1. Plate heat exchanger for HEATING
2. Servo-controlled valve for HEATING
3. Servomotor for HEATING
4. Thermal energy meter
5. Controller
6. Electrical panel
7. On/off ball valve on PRIMARY side
8. PRIMARY side filter
9. Safety valve
10. Temperature sensor on PRIMARY side
11. Temperature sensor on HEATING side
12. Expansion tank
13. Thermostat
14. ISPESL thermometer well
15. Drain valve
16. External sensor
17. Fitting for thermometer
18. Fitting for pressure gauge
19. Secondary
20. Return
21. Flow Outlet
22. Primary Circuit Inlet
23. Secondary Delivery
24. Secondary Return
25. On/off butterfly valve, HEATING side
26. MISCELLANEOUS
27. Filler, HEATING side
SKID-TYPE SUBSTATION FOR HEATING AND DOMESTIC HOT-WATER PRODUCTION
(with heat exchangers in parallel configuration)

This type of substation is suitable for high and medium capacity systems, supplied by superheated water or hot water, for heating and production of domestic hot water. This type of substation is recommended for systems requiring separate and independent management of the heating and domestic hot water circuits. These skid-type substations can be equipped with the SIEMENS RVD (or similar) controller or with the TECHNO SYSTEM TSRE 010 temperature-control system.

With this type of substation, users can:
- directly set the heating set-point and the DHW set-point using easy-access dedicated pushbuttons. (TSRE 010)
- manage heating and DHW production independently, with separate onboard timers and weekly programs.
- manage heating by external thermostat/timer-thermostat or on the basis of a weekly schedule programmed in the controller (on/off settings at half-hour intervals). (TSRE 010)
- set SUMMER or WINTER parameters (DHW only activated in SUMMER mode, DHW and heating activated in WINTER mode).
- manage heating temperature by the fixed-point or climate-curve method.
- set the set-points for heating, DHW, and recirculation (if applicable) independently.
- with the special Economy function, give precedence to DHW over HEATING. (TSRE 010)
- lock the heating-side set-point for systems serving floor panels. (TSRE 010)
- set an ANTI-SCUFF cycle for the HEATING side pump (if installed) when system is in SUMMER mode.
- set an ANTIFREEZE cycle with minimum threshold.
- maintain temperature in the primary circuit via hydraulic bypass (with ball valve) or managed by the regulator (with times, intervals, and quantities set via the onboard calendar). (TSRE 010)
- connect a safety thermostat on the heating side (for floor-panel systems) featuring cut-in signal (by acoustic alarm and display message).
- connect a safety thermostat on the DHW side (for protection against scalding) featuring cut-in signal (by acoustic alarm and display message).
- signal sensor malfunction (by acoustic alarm and display message). (TSRE 010)
- signal excessive pressure in the heating circuit by acoustic alarm and display message and signal low water level in the heating circuit (and shutdown of the heating side pump, if applicable) by acoustic alarm and display message). (TSRE 010)
- reset the values to factory defaults.
- integrate into other systems with accumulators, traditional boilers, and solar panels.

Additionally, this type of substation is prepared for installing devices for:
- managing recirculation via PID with set-point independent of DHW.
- managing an ANTI-LEGIONELLA thermal disinfection cycle via onboard calendar (the system must comprise recirculation).
- limiting the flow rate on the DHS side.
- limiting the return temperature on the DHS side, with sensor malfunction signal (by acoustic alarm and display message).
- remote reading of the thermal energy meter.
- remote control.
- managing a GSM or PSTN modem connection, which permits sending SMSs or e-mails for notifying alarms or malfunctions.

Note: each substation is dimensioned on the basis of the pressure on the two circuits, the thermal head, and/or the heating capacity requested by the customer. For this reason, the overall dimensions of the substations are subject to change, case by case.
Hydraulic Diagram

Suggested diagram for district heating units working with hot water

For district heating units working with superheated water Techno System suggests using a single substation and an additional TS Module for tap water production (see diagrams at p. 17), in order to avoid encrustation problems.

COMPONENTS

1. Plate heat exchanger for HEATING
2. Plate heat exchanger for DHW
3. Servo-controlled valve for HEATING
4. Servo-controlled valve for DHW
5. Servomotor for HEATING
6. Servomotor for DHW
7. Thermal energy meter
8. Controller
9. Electrical panel
10. On/off ball valve on PRIMARY side
11. PRIMARY side filter
12. Safety valve
13. Temperature sensor on PRIMARY side
14. Temperature sensor on HEATING side
15. Expansion tank
16. Thermometer
17. Pressure gauge + 3-way valve, pressure gauge housing
18. Thermostat (dual thermostat for superheated water)
19. ISPESL thermometer well
20. Drain valve
21. Fitting for thermometer
22. Fitting for pressure gauge
23. External sensor
24. Temperature sensor on DHW side

OPTIONALS

ON/OFF VALVE SET

25. On/off butterfly valve, HEATING side
26. On/off butterfly valve, DHW side

MISCELLANEOUS

27. Filter, HEATING side
28. Filter, DHW side
Technical Features

- **Maximum operating pressure DHS network**: 16 bar (optional PN25)
- **Maximum operating pressure Heating side**: 2.7 bar
- **Maximum operating pressure DHW side**: 6 bar (where applicable)
- **Maximum differential pressure on primary side**: 12 bar (for some models optional 3.5 bar)
- **Minimum differential pressure on primary side close to substation**: 2 bar
- **Maximum pressure drop on primary side**: 1 bar
- **Test pressure (differential)**: 1.43 times design pressure.
- **Minimum guaranteed residual head on Heating side**:
 - 2.5 m.c.a.
- **Protection Class**: IP54
- **Electrical supply voltage**: 230 V
- **Electrical supply frequency**: 50 Hz

The district heating substation is a fully pre-assembled, pre-cabled unit for heat transmission, featuring high yield and maximum operating safety. The structure consists of a zinc-plated frame covered with protective jackets in painted sheet metal which define the overall dimensions of the substation and houses:

- **Braze welded plate heat exchangers**
- **Safety accessories**:
 - Safety valves, ISPESL certified (PED)
 - Expansion tank
- **Monitoring accessories**:
 - Pressure gauges
 - Thermometers
 - High-sensitivity immersion sensors
- **Protection accessories**:
 - Safety thermostats
 - Safety dual thermostat for superheated water and single thermometer for hot water
- **Control accessories**:
 - Two-way seated poppet valves
 - Electrical servo control for the above-mentioned valves
- **Automatic control accessories**:
 - Thermal regulation station for monitoring temperatures at various points and programming and defining parameters for the physical and electrical values to be managed.
- **Main electrical control panel**

The wall-mounted district heating substations are available in two installation versions:

- wall-hung
- recessed

The wall-mounted district heating substations are available:

- for heating only
- for heating and DHW production

On request, the wall-mounted district heating substations can be supplied fully insulated, with a shell installed inside the frame.
WALL-MOUNTED SUBSTATION FOR HEATING USE ONLY

This type of substation is suitable for small capacity systems supplied by hot water or superheated water. It is designed for heating use only (radiators, fan coils, floor panels, etc.) when production of domestic hot water is not required.

This type of substation is equipped with the TECHNO SYSTEM TSRE 010 temperature-control system.

With this type of substation, users can:
- directly set the heating set-point using easy-access dedicated pushbuttons.
- read the heating delivery temperatures directly on the controller display.
- manage heating independently, with separate onboard timers and weekly programs.
- manage heating by external thermostat/timer-thermostat or on the basis of a weekly schedule programmed in the controller (on/off settings at half-hour intervals).
- set SUMMER or WINTER parameters (heating deactivated in SUMMER mode).
- manage heating temperature by the fixed-point or climate-curve method.
- lock the heating-side set-point for systems serving floor panels.
- set an ANTI-SCUFF cycle for the HEATING side pump (if installed) when system is in SUMMER mode.
- set an ANTIFREEZE cycle with minimum threshold.
- maintain temperature in the primary circuit managed by the regulator (with times, intervals, and quantities set via the onboard calendar) or on request with by-pass through the ball valve.
- connect a safety thermostat on the heating side (for floor-panel systems) featuring cut-in signal (by acoustic alarm and display message).
- signal sensor malfunction (by acoustic alarm and display message). (TSRE 010)
- signal excessive pressure in the heating circuit by acoustic alarm and display message and signal low water level in the heating circuit (and shutdown of the heating side pump, if applicable) by acoustic alarm and display message.
- reset the values to factory defaults.
- integrate into other systems with accumulators, traditional boilers, and solar panels.

Additionally, this type of substation is prepared for installing devices for:
- limiting the flow rate on the DHS side.
- limiting the return temperature on the DHS side, with sensor malfunction signal (by acoustic alarm and display message).
- remote reading of the thermal energy meter.
- remote control.
- managing a GSM or PSTN modem connection, which permits sending SMSs or e-mails for notifying alarms or malfunctions.

Capacities and Dimensions

<table>
<thead>
<tr>
<th>Model</th>
<th>Heating Capacity (kW)</th>
<th>Overall dimensions (mm)</th>
<th>Connections on Primary Side</th>
<th>Connections on Heating Side</th>
<th>Empty Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R34T</td>
<td>34</td>
<td>580x685x220</td>
<td>G 1”</td>
<td>G 3/4”</td>
<td>20</td>
</tr>
<tr>
<td>R50T</td>
<td>50</td>
<td>580x685x220</td>
<td>G 1”</td>
<td>G 1”</td>
<td>28</td>
</tr>
<tr>
<td>R75T</td>
<td>75</td>
<td>760x765x275</td>
<td>G 11/4”</td>
<td>G 11/4”</td>
<td>60</td>
</tr>
<tr>
<td>R100T</td>
<td>100</td>
<td>760x765x275</td>
<td>G 11/4”</td>
<td>G 11/4”</td>
<td>61</td>
</tr>
<tr>
<td>R116T</td>
<td>116</td>
<td>760x765x275</td>
<td>G 11/4”</td>
<td>G 11/4”</td>
<td>62</td>
</tr>
</tbody>
</table>

NOTE: the dimensions reported are purely indicative and refer to wall-hung substations constructed in accordance with TECHNO SYSTEM standards (dimensions may differ in the case of the recessed version).
COMPONENTS

1 Plate heat exchanger for HEATING
3 Servo-controlled valve for HEATING
5 Servomotor for HEATING
7 Thermal energy meter
8 Controller
9 Electrical panel
11 Filter
12 Safety valve
13 Temperature sensor on HEATING side
15 Expansion tank
16 Vent ball valve on PRIMARY side
18 Vent valve on HEATING side

OPTIONALS

ON/OFF VALVE SET
21 On/off ball valve on PRIMARY side
22 On/off ball valve on HEATING side

TEMPERATURE LIMITER SET PRIMARY SIDE
24 Limit temperature sensor for PRIMARY side
DELIVERY LIMITER SET PRIMARY SIDE
25 Thermal energy meter with pulse counter card

TEMPERATURE SAFETY SET HEATING SIDE FOR FLOOR PANEL SYSTEM
26 Thermostat on HEATING side

SUPERHEATED WATER
27 Dual thermostat
28 ISPESL thermometer well
PRESSURE SAFETY SET HEATING SIDE
31 Maximum/Minimum pressure switch

PUMP SET
32 Minimum pressure switch
33 Circulation pump

MISCELLANEOUS
34 External sensor
35 Bypass ball valve
WALL-MOUNTED SUBSTATION FOR HEATING AND DOMESTIC HOT-WATER PRODUCTION (with heat exchangers in parallel configuration)

This type of substation is suitable for small capacity systems, supplied by hot water (or superheated) for heating (via radiators, fan coils, floor panels, etc.) and production of domestic hot water.

This type of substation is recommended for systems requiring separate and independent management of the heating and domestic hot water circuits (the system may also be configured to give precedence to production of hot water over heating).

This type of substation is equipped with the TECHNO SYSTEM TSRE 010 temperature-control system.

With this type of substation, users can:
- directly set the heating set-point and the DHW set-point using easy-access dedicated pushbuttons.
- read the heating delivery, DHW, and recirculation (if applicable) temperatures directly on the controller display.
- manage heating and DHW production independently, with separate onboard timers and weekly programs.
- manage heating by external thermostat/timer-thermostat or on the basis of a weekly schedule programmed in the controller (on/off settings at half-hour intervals).
- set SUMMER or WINTER parameters (DHW only activated in SUMMER mode, DHW and heating activated in WINTER mode).
- manage heating temperature by the fixed-point or climate-curve method.
- set the set-points for heating, DHW, and recirculation (if applicable) independently.
- with the special Economy function, give precedence to DHW over HEATING.
- lock the heating-side set-point for systems serving floor panels.
- set an ANTI-SCUFF cycle for the HEATING side pump (if installed) when system is in SUMMER mode.
- set an ANTIFREEZE cycle with minimum threshold.
- maintain temperature in the primary circuit via bypass (with ball valve) or managed by the regulator (with times, intervals, and quantities set via the onboard calendar).
- connect a safety thermostat on the heating side (for floor-panel systems) featuring cut-in signal (by acoustic alarm and display message).
- connect a safety thermostat on the DHW side (for protection against scalding) featuring cut-in signal (by acoustic alarm and display message).
- signal sensor malfunction (by acoustic alarm and display message).
- signal excessive pressure in the heating circuit by acoustic alarm and display message and signal low water level in the heating circuit (and shutdown of the heating side pump, if applicable) by acoustic alarm and display message).
- reset the values to factory defaults.
- integrate into other systems with accumulators, traditional boilers, and solar panels.

Additionally, this type of substation is prepared for installing devices for:
- managing recirculation via PID with set-point independent of DHW.
- managing an ANTI-LEGIONELLA thermal disinfection cycle via onboard calendar (the system must comprise recirculation).
- limiting the flow rate on the DHS side.
- limiting the return temperature on the DHS side, with sensor malfunction signal (by acoustic alarm and display message).
- remote reading of the thermal energy meter.
- remote control.
- managing a GSM or PSTN modem connection, which permits sending SMSs or e-mails for notifying alarms or malfunctions.

Capacities and Dimensions

<table>
<thead>
<tr>
<th>Model</th>
<th>Heating Capacity (kW)</th>
<th>Overall dimensions (mm)</th>
<th>Connections on Primary Side</th>
<th>Connections on Heating Side</th>
<th>Connections on DHW Side</th>
<th>Empty Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RI34T.P</td>
<td>34+34</td>
<td>580x685x220</td>
<td>G 1”</td>
<td>G 3/4”</td>
<td>G 1/2”</td>
<td>30</td>
</tr>
<tr>
<td>RI50T.P</td>
<td>50+34</td>
<td>760x765x275</td>
<td>G 11/4”</td>
<td>G 1”</td>
<td>G 1/2”</td>
<td>45</td>
</tr>
</tbody>
</table>

NOTE: the dimensions reported are purely indicative and refer to wall-hung substations constructed in accordance with TECHNO SYSTEM standards (dimensions may differ in the case of the recessed version).
Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plate heat exchanger for HEATING</td>
</tr>
<tr>
<td>2</td>
<td>Plate heat exchanger for DHW</td>
</tr>
<tr>
<td>3</td>
<td>Servo-controlled valve for HEATING</td>
</tr>
<tr>
<td>4</td>
<td>Servo-controlled valve for DHW</td>
</tr>
<tr>
<td>5</td>
<td>Servomotor for HEATING</td>
</tr>
<tr>
<td>6</td>
<td>Servomotor for DHW</td>
</tr>
<tr>
<td>7</td>
<td>Thermal energy meter</td>
</tr>
<tr>
<td>8</td>
<td>Controller</td>
</tr>
<tr>
<td>9</td>
<td>Electrical panel</td>
</tr>
<tr>
<td>10</td>
<td>Flow switch</td>
</tr>
<tr>
<td>11</td>
<td>Filter</td>
</tr>
<tr>
<td>12</td>
<td>Safety valve</td>
</tr>
<tr>
<td>13</td>
<td>Temperature sensor on HEATING side</td>
</tr>
<tr>
<td>14</td>
<td>Temperature sensor on DHW side</td>
</tr>
<tr>
<td>15</td>
<td>Expansion tank</td>
</tr>
<tr>
<td>16</td>
<td>Vent ball valve on PRIMARY side</td>
</tr>
<tr>
<td>17</td>
<td>Bypass ball valve</td>
</tr>
<tr>
<td>18</td>
<td>Vent valve on HEATING side</td>
</tr>
<tr>
<td>19</td>
<td>Filling ball valve</td>
</tr>
<tr>
<td>20</td>
<td>Pressure gauge</td>
</tr>
<tr>
<td>21</td>
<td>Minimum pressure switch</td>
</tr>
<tr>
<td>22</td>
<td>Circulation pump</td>
</tr>
</tbody>
</table>

Optionals

ON/OFF VALVE SET

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>On/off ball valve on PRIMARY side</td>
</tr>
<tr>
<td>22</td>
<td>On/off ball valve onHEATING side</td>
</tr>
<tr>
<td>23</td>
<td>On/off ball valve on DHW side</td>
</tr>
</tbody>
</table>

TEMPERATURE LIMITER SET PRIMARY SIDE

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Limit temperature sensor for PRIMARY side</td>
</tr>
</tbody>
</table>

DELIVERY LIMITER SET PRIMARY SIDE

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Thermal energy meter with pulse counter card</td>
</tr>
</tbody>
</table>

TEMPERATURE SAFETY SET HEATING SIDE FOR FLOOR PANEL SYSTEM

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Thermostat on HEATING side</td>
</tr>
</tbody>
</table>

TEMPERATURE SAFETY SET DHW SIDE (ANTI-SCALDING)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>Thermostat on DHW side</td>
</tr>
</tbody>
</table>

RECIIRCULATION SET

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>Temperature sensor on RECIRCULATION side</td>
</tr>
<tr>
<td>29</td>
<td>Safety valve on DHW side</td>
</tr>
<tr>
<td>30</td>
<td>Vent valve on DHW side</td>
</tr>
<tr>
<td>31</td>
<td>On/off ball valve on RECIRCULATION side</td>
</tr>
</tbody>
</table>

PRESSURE SAFETY SET HEATING SIDE

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>Maximum/Minimum pressure switch</td>
</tr>
</tbody>
</table>

MISCELLANEOUS

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>External sensor</td>
</tr>
</tbody>
</table>

Diagram

[Hydraulic Diagram]

- Primary Circuit Inlet
- Primary Row Outlet
- Cold Water Inlet
- Recirculation
WALL-MOUNTED SUBSTATION FOR HEATING AND DOMESTIC HOT WATER PRODUCTION (with heat exchangers in series configuration)

This type of substation is suitable for small capacity systems supplied by superheated water (or by hot water at sufficiently high temperature). It is designed for heating (via radiators, fan coils, floor panels, etc.) and production of domestic hot water. This type of substation is recommended for systems in which independent management of the heating and domestic hot water circuits is not required (hot water production always takes precedence over heating).

This type of substation is equipped with the TECHNO SYSTEM TSRE 010 temperature-control system.

With this type of substation, users can:
- directly set the heating set-point using easy-access dedicated pushbuttons.
- read the heating delivery, DHW, and recirculation (if applicable) temperatures directly on the controller display.
- manage heating and DHW production independently, with separate onboard timers and weekly programs.
- manage heating by external thermostat/timer-thermostat or on the basis of a weekly schedule programmed in the controller (on/off settings at half-hour intervals).
- set SUMMER or WINTER parameters (DHW only activated in SUMMER mode, DHW and heating activated in WINTER mode).
- manage heating temperature by the fixed-point or climate-curve method.
- set the set-points for heating, DHW, and recirculation (if applicable) independently.
- lock the heating-side set-point for systems serving floor panels.
- set an ANTI-SCUFF cycle for the HEATING side pump (if installed) when system is in SUMMER mode.
- set an ANTIFREEZE cycle with minimum threshold.
- maintain temperature in the primary circuit managed by the regulator (with times, intervals, and quantities set via the onboard calendar) or on request with by-pass through the ball valve.
- connect a safety thermostat on the heating side (for floor-panel systems) featuring cut-in signal (by acoustic alarm and display message).
- connect a safety thermostat on the DHW side (for protection against scalding) featuring cut-in signal (by acoustic alarm and display message).
- signal sensor malfunction (by acoustic alarm and display message).
- signal excessive pressure in the heating circuit by acoustic alarm and display message and signal low water level in the heating circuit (and shutdown of the heating side pump, if applicable) by acoustic alarm and display message).
- reset the values to factory defaults.
- integrate into other systems with accumulators, traditional boilers, and solar panels.

Additionally, this type of substation is prepared for installing devices for:
- managing recirculation via PID with set-point independent of DHW.
- managing an ANTI-LEGIONELLA thermal disinfection cycle via onboard calendar (the system must comprise recirculation).
- limiting the flow rate on the DHS side.
- limiting the return temperature on the DHS side, with sensor malfunction signal (by acoustic alarm and display message).
- remote reading of the thermal energy meter.
- managing remote control.
- managing a GSM or PSTN modem connection, which permits sending SMSs or e-mails for notifying alarms or malfunctions.

Capacities and Dimensions

<table>
<thead>
<tr>
<th>Model</th>
<th>Heating Capacity (kW)</th>
<th>Overall dimensions (mm)</th>
<th>Connections on Primary Side</th>
<th>Connections on Heating Side</th>
<th>Connections on DHW Side</th>
<th>Empty Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RI34T.S</td>
<td>34</td>
<td>580x685x220</td>
<td>G 3/4"</td>
<td>G 3/4"</td>
<td>G 1/2"</td>
<td>32</td>
</tr>
</tbody>
</table>

NOTE: The dimensions reported are purely indicative and refer to wall-hung substations constructed in accordance with TECHNO SYSTEM standards (dimensions may differ in the case of the recessed version).
Hydraulic Diagram

COMPONENTS
1 Interface plate heat exchanger
2 Plate heat exchanger for DHW
3 Servo-controlled valve
4 Servomotor
5 3-way valve
6 Circulation pump
7 Thermal energy meter
8 Controller
9 Electrical panel
10 Flow switch
11 Filter
12 Safety valve
13 Temperature sensor on HEATING side
14 Temperature sensor on DHW side
15 Expansion tank
16 Vent ball valve on PRIMARY side
17 Dual thermostat
18 Vent valve on HEATING side
19 Filling ball valve
20 Pressure gauge
21 On/off ball valve on PRIMARY side
22 On/off ball valve on HEATING side
23 On/off ball valve on DHW side
24 Limit temperature sensor for PRIMARY side
25 Thermal energy meter with pulse counter card
26 Thermostat on HEATING side
27 Thermostat on DHW side
28 Temperature sensor on RECIRCULATION side
29 Safety valve on DHW side
30 On/off valve on DHW side
31 Minimum pressure switch
32 Maximum/Minimum pressure switch
33 Bypass ball valve
34 External sensor
EXAMPLES OF SYSTEM LAYOUTS

LEGEND

The symbols shown and explained in this section refer to the system layout diagrams reproduced below. Although these diagrams have been modified according to the needs of the designer, they are all highly reliable and thoroughly “field-tested.”

Heat exchanger

Radiator

Hot domestic water outlet

Accumulation tank

Boiler

Solar panel

Pool

2-way valve

3-way valve

3-way mixing valve

Circulation pump

Y filter

Sensor

Ball valve

Butterfly valve

Safety valve

Thermal energy meter

Flow switch

External sensor

Room thermostat

Temperature-control thermostat

Maximum pressure switch

Minimum pressure switch

Thermometer

Pressure gauge

ISPESL thermometer

well

Expansion tank

Electrical panel

Logic unit (not supplied)

Non-return valve

Water-softening unit

Pressure reducer

Bypass valve

Water treatment

Pool filter

Pump with pre-filter

Hydraulic separator
DIAGRAM No. 1
Skid-type substation for heating use only with integrated TS module for instantaneous domestic hot water production

DIAGRAM No. 2
Skid-type substation for heating use only with integrated TS module for use with accumulation tank for domestic hot water production

DIAGRAM No. 3
Skid-type substation for heating use only with integrated TS module for pool heating
DIAGRAM No. 4
Skid-type or wall-mounted substation for heating use only with integrated boiler for domestic hot water production

Warning: in case of system installation employing wall-mounted substation, the heating side pump should not be supplied (or is supplied, should not be connected to the controller on the substation but, instead, to a logic unit external to the substation).

DIAGRAM No. 5
Wall-mounted substation with heat exchangers in parallel configuration and integrated accumulation tank

DIAGRAM No. 6
Wall-mounted substation with heat exchangers in parallel configuration and integrated accumulators and solar panels
DIAGRAM No. 7

Wall-mounted substation with parallel exchangers and hydraulic separator on heating circuit